L’IA dite  » faible « 

La notion d’intelligence artificielle faible constitue une approche pragmatique d’ingénieur : chercher à construire des systèmes de plus en plus autonomes (pour réduire le coût de leur supervision), des algorithmes capables de résoudre des problèmes d’une certaine classe, etc. Mais, cette fois, la machine simule l’intelligence, elle semble agir comme si elle était intelligente. On en voit des exemples concrets avec les programmes conversationnels qui tentent de passer le test de Turing, comme ELIZA. Ces logiciels parviennent à imiter de façon grossière le comportement d’humains face à d’autres humains lors d’un dialogue.

Joseph Weizenbaum, créateur du programme ELIZA, met en garde le public dans son ouvrage Computer Power and Human Reason : si ces programmes « semblent » intelligents, ils ne le sont pas : ELIZA simule très grossièrement un psychologue en relevant immédiatement toute mention du père ou de la mère, en demandant des détails sur tel élément de phrase et en écrivant de temps en temps « Je comprends. », mais son auteur rappelle qu’il s’agit d’une simple mystification : le programme ne comprend en réalité rien.

Les tenants de l’IA forte admettent que s’il y a bien dans ce cas simple simulation de comportements intelligents, il est aisé de le découvrir et qu’on ne peut donc généraliser. En effet, si on ne peut différencier expérimentalement deux comportements intelligents, celui d’une machine et celui d’un humain, comment peut-on prétendre que les deux choses ont des propriétés différentes ? Le terme même de « simulation de l’intelligence » est contesté et devrait, toujours selon eux, être remplacé par « reproduction de l’intelligence ».

Les tenants de l’IA faible arguent que la plupart des techniques actuelles d’intelligence artificielle sont inspirées de leur paradigme. Ce serait par exemple la démarche utilisée par IBM dans son projet nommé Autonomic computing. La controverse persiste néanmoins avec les tenants de l’IA forte qui contestent cette interprétation.

Simple évolution, donc, et non révolution : l’intelligence artificielle s’inscrit à ce compte dans la droite succession de ce qu’ont été la recherche opérationnelle dans les années 1960, la supervision (en anglais : process control) dans les années 1970, l’aide à la décision dans les années 1980 et l’exploration de données dans les années 1990. Et, qui plus est, avec une certaine continuité.

Il s’agit surtout d’intelligence humaine reconstituée, et de programmation ad hoc d’un apprentissage, sans qu’une théorie unificatrice n’existe pour le moment (2011). Le théorème de Cox-Jaynes indique toutefois, ce qui est un résultat fort, que sous cinq contraintes raisonnables, tout procédé d’apprentissage devra être soit conforme à l’inférence bayésienne, soit incohérent à terme, donc inefficace.

Laisser un commentaire

Concevoir un site comme celui-ci avec WordPress.com
Commencer